Spherical Coefficients of Slice Regular Functions
نویسندگان
چکیده
Given a quaternionic slice regular function $f$, we give direct and effective way to compute the coefficients of its spherical expansion at any point. Such are obtained in terms derivatives itself. Afterwards, compare $f$ with those derivative $\partial_{c}f$ obtaining countable family differential equations satisfied by function. The results proved all details accompanied several examples. For some results, also alternative proofs.
منابع مشابه
A Cauchy kernel for slice regular functions
In this paper we show how to construct a regular, non commutative Cauchy kernel for slice regular quaternionic functions. We prove an (algebraic) representation formula for such functions, which leads to a new Cauchy formula. We find the expression of the derivatives of a regular function in terms of the powers of the Cauchy kernel, and we present several other consequent results. AMS Classific...
متن کاملExtension results for slice regular functions of a quaternionic variable
In this paper we prove a new representation formula for slice regular functions, which shows that the value of a slice regular function f at a point q = x + yI can be recovered by the values of f at the points q + yJ and q + yK for any choice of imaginary units I, J,K. This result allows us to extend the known properties of slice regular functions defined on balls centered on the real axis to a...
متن کاملA Phragmén - Lindelöf principle for slice regular functions
The celebrated 100-year old Phragmén-Lindelöf theorem, [15, 16], is a far reaching extension of the maximum modulus theorem for holomorphic functions that in its simplest form can be stated as follows: Theorem 1.1. Let Ω ⊂ C be a simply connected domain whose boundary contains the point at infinity. If f is a bounded holomorphic function on Ω and lim supz→z0 |f(z)| ≤ M at each finite boundary p...
متن کاملInitial coefficients of starlike functions with real coefficients
The sharp bounds for the third and fourth coefficients of Ma-Minda starlike functions having fixed second coefficient are determined. These results are proved by using certain constraint coefficient problem for functions with positive real part whose coefficients are real and the first coefficient is kept fixed. Analogous results are obtained for a general class of close-to-convex functions
متن کاملIntegral Properties of Zonal Spherical Functions, Hypergeometric Functions and Invariant
Some integral properties of zonal spherical functions, hypergeometric functions and invariant polynomials are studied for real normed division algebras.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Results in Mathematics
سال: 2021
ISSN: ['1420-9012', '1422-6383']
DOI: https://doi.org/10.1007/s00025-021-01477-4